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Non-linear waves in Plasmas and disk-like Galaxies

The object of this paper is to draw attention to the fact that
the analogy between cooperative waves in plasmas and in systems

involving gravitational interaction extends beyond the commonly

(1)(2)

domain of linear approximations. We shall show

(3)

explored
on a simple model for a disk-like galaxy, the counterpart to a
"nonlinear cold plasma'. A characteristic feature of the associated
waves is (see fig. 1l ) that even for infinitesimally small amplitudes
one may have arbitrarily large gradients and hence very strong bunching
up of particles. For gravitational attraction, this may lead to local
instabilities growing at much faster rate than predicted by the linear
analysis. It also turns out that these nonlinear modes in general dis-
()

play azimuthal asymmetries of the spiral type. It is thus expected

that their introduction will have bearing on current endeavors on the

-(1 -
exploration of sta'bility(5 )-(19 and of the nature of spiral arms @3)-(18
of galactic models. Another application of the method would be to
1o )-( 2k

radial and nonradial, non-linear oscillatiocns of variable stars.
However, a complete solution of the nonlinear problem is of course
formidable even in the simplest examples, and at one point or another
one has to resort to some approximéfion procedures. We here propose
therefore to introduce the method only as far as 1t can be carried
exactly and merely to indicate the possible approximation procedures
which may then be taken in order to continue the solution. A more
systematic attack on the latter is hoped to be dealt with in another

paper, in conjunction with C. Cuvaj.

In Part I we shall re-formulate the problem of a nonlinear cold

plasma in a way which is somewhat different from previous formulations.¥*

(see next page for footnote)



Most of the results here obtained have been established, in portions,
in a number of publications ranging over the past 8 or 9 years.( 29-( 29
However, our main result, equations (11), (13), (19), which is particular-
ly convenient for fast iteration, seems to have remained unnoticed. Also,
the exact solution (23) for the three dimensional case is, as far as we
could ascertain, new. The main point in the present representation is
that it works from the start - and obtains the exact solutions - in the

Bulerian representation, whereas other treatments use the Lagrangian

representation in varying degrees.

The convenient form (11) in which the Eulerian solutions are

obtained should save much work which has often been left to electronic

(29)

computers.

* (footnote for page #1) The results of Part I were obtained in
1957/58, while the author was a gr%%g%te student at Bristol University,
England, but remained unpublished. In connection with the work of
Part I, the author wishes to thank Prof. D. Bohm for criticism and
discussions, Prof. M.H.L. Pryce for the hospitality at the H.H. Wills
laboratories and the N.S.D.I.R. of the British Government for a grant
at that period.



Part I : Non linear waves in a Plasma

I.1l. The eguations of a cold Plasma

We consider‘the model of a negatively charged, continuous fluid,
rgpresenting approximately a nondegenerate gas of electrons of mass m
and charge e = - lel . This fluid is immersed in a background of a
uniform, stationary positive charge distribution of charge density lnol
which}%qual in magnitude to the average charge density n, of the
electron fluid. We assume that the fluid 1s cold, 1l.e., at each point
in space, ;c, only one value of velocity exists, ;(;,t) (as far as the
hydrodynamical description is single-valued). Let D/Dt be the
convective derivative for the fluid, E(;,t) the electric field produced
at ;,'{-: by all charges present, p(x?t) + n_ the density of the electron
fluid. If we assume the velocities to be slow enough for magnetic

effects to be negligible, the basis equations of the model are:

e (1a)

divE =41 p (p > O means deficiency of electrons), (1b)

dE
=+ 4mlp +n ) v=0. le
= (b +n ) v (1e)

(lc) is the third Maxwell equation in the absence of magnetic field;

its div gives the conservation equation for p + N’ Taking D/Dt of

,

(1a) one obtains

m B,zv
e

te

2

vy

OF
=+ (v - V) E=
ot (v -%)E

and by eliminating p from (1b) and (lc) one obtains

a_“E'+1_rdiv_E=l+ﬂnoz.

ot



From these two equations one obtains, by subtraction

o
g+@‘22=(z-2)5)§-zdivﬁ; (2)
Dt P Dt Dt
2

where wy = Lo n, e/m (3)

This is an exact non-linear equation for v(x,t) alone. An
equation for p, which, however, involves v too, can also be
obtained: the conservation equation Dp/Dt + (no +p) divy = O can

be written in the form
D n (p +n_) = div v.
Dt o) -~

If the D/Dt of this equation is taken, and

. ... Dv 2
%E div v = div = - Tr(8%) ()

is used, where Tr is the trace and S is the "dissipation matrix"

[ vy av2 Bv3 y
0x Ox 0ox
S = oy 9dy Oy ? A

a'V'l 8v2 Bv3
0z dz Oz

-

one obtains

D2 w2 2
=, 4n (p+no) +p p= Tr(s%) (5)

Dt nO

I.2. The exact solution for the one-dimensional case.

In the one-dimensional case, (4) and (5) reduce to
2

lw)
<

|

+ wﬁ.z =0, (6)

cJ
ct
n



DZZn@ +n) D&n (p +n) w2
5 S - < + n_P_ p= 0, (7)
Dt Dt o

because in one dimension v*V = v div and

1r(s?) = (v/ox)® = [(1/p+n )p/Dt1°=[D 4n(p+n_)/Dt]?

by virtue of the conservation equation for p. (7) can be further

simplified:
e n p(p+ny) = O. | (7a)

0
(6) seems to have been obtained first by Polovin et ale ) (from

the one-dimensional equations of motion) who, however, did not attempt

1
an exact solution. Sturrock(3 ) obtained the equivalent of (3) and
(5) by working from the start in the fourier representation, and he
solved them by an approximation procedure in that representation up

to the second approximation.

We shall first look for complex solutions of (6). ILed by the

analogy that Q_~ § exp (- igggl)/(l - kggl)solves the case of
O

)

linear (but non-continuous) plasma, one may consider the
dencminator of Q. as the first order expansion of exp(1§:!l/»p), and
one is thus led to try solving (6) by

v(xlt) = aei(kx - wpt) e kw/mp> (8)

where ® is a constant. Indeed, since
(pt+wPx) exp [1(mx - v t)] = - 1(@ - kv) exp [i(lex - v t)],
the D/Dt of (8) gives

Dv k- Dv

e A - = =X i.e.
ot i (wp kv) v + @, TRL >
DVI - A . ’ - AN

Dt \Wp - Kv) = - 1wp\wp- kv) v,

[y




so that, as long as @ # kv,

Dv .

—_— [4))] =O.

ot TtV (9)
But since

D2v 2 D D

—— = = + 3 =

Dt wp v ( Dt + wp) (Dt * wp) Vs

(8) solves also the equation (6). (8) defines v only implicitly,
since v appears also on the right-hand side. For small kvﬂ»p we
have v & & exp (i(kxA»pt) ), i.e., we have the linear solution.
For larger kvﬁ»p, the factor exp (kvﬁ»p) modulates the amplitude
in a way which depends on itself, i.e., in a typical non-linear
way. (8) can then be solved by an iteration procedure, starting’
with the linear solution. However, (8) can easily be thrown into
the form z exp z = a, where z = (-kvﬁbp) and

a =‘(-ka/mp) exp [i(kanpt)]. This equation has been investigated
for over a hundred years by various mathematicians (see Wright)(32)

and their results can be used to obtain further physical properties.*

i

As can be seen by straightforward differentiation, the solution

(8) can be generalized: ai and ki being arbitrary, also
i(ks -w t kiv/w
v(xlt) = Zl Q/iel(kl X P ) e( lv/ p) (lO)
is a solution of (6).

So far, we have disregarded the fact that (8) is a complex

solution, whereas v 1s to be real. Hence, we shall have to modify

¥ I am indebted to A.A. Cottey for drawing my attention to the
fact that the solution (8) can also be obtained in the following way:
Assuming a plane-wave solution v = v(E) where E=kx - wpt we

have that

and this inte

(8) follows.

vwotaa +A dvra lme | om
LTEVeS U0

wpﬁn v + 1 wp§ = const, trom which



our method of solution somewhat. By taking the D/Dt of (6) and

using E = (m/e) Dv/Dt we notice that E too fulfills D2E/Dt

To obtain a real solution for both, we write
KE

v=acos (kx -wt+=5+0),
p 2
w
P
. KE
E =0, o sin (kx - wpt + 2 +8),
P

where U is a constant phase ractor.

Indeed (denoting Df/Dt from now on by f),

. E KEE
v o= (wp - kV) 5‘ - ——§ s
p W
P
~
_ kEv
a—-(wp-kV)V'*' 22
P W
: p
i.es, E (w - kv)=-w_-5kv) v,
P P
so that as long as W # kv
BE=-w v #+wSE=0
p p
giving
\}:E . {}'+w§v=o

2+w§E = 0,
(11a)
(11v)
(12)

Hence (11) solves our basic set of equations (1). Again it can be

shown that also

v=xa, cos (k.x -w t + KE 0.),
i 1 1 p ——5 1
w
p
. k:E
= = - 1
E wp : @, sin (kix wpt +m_2 + ei),
Y

solves (1).

(13a)

(13v)

(11) can be condensed into the complex form (where v and E are




now real)
v+ %E = Qe 1(kx - wpt) e }5522 (1k)
(Y Y

If we write z = x + ivﬁ»p, w= é = v + iEﬁDp,
(14) can be written

(k2 - wpt) e (kwﬁ”p)- (15)

w = Ue

The implicit solution (1lb) for E is independent of v; denoting

the phase Jx = @ bt by §, we have E = w & sin (€ + kEﬂng),

The graphic representation of E(§)/o is a sine-curve which is
tilted to the right, as shown in fig. 1:
If @k/w = 1 the

derivative JE/SE

nlm

becqmes infinite at the

Eakx-wpt
points € = 0 and if \\\__,,/”/,> -

ak/wp > 1 the graph

nlm

becomes at first

three-valued in a Z::__i—*”’//' £xkn-wyt

certain range, and if

dk/wp is further FIG.3. Graphical representation of Eaasin (kx-wte ETE! )

increased, it becomes

5,759...-valued. This Fig.§. Graphical representation of
indicates that shock E = @ sin (kx4»pt + kE )

2
conditions are obtained wp

when akﬁ»p =1,.i.e.,
continuity is destroyed.

By taking k, = -k and ¢, = @, in (13), one verifies that also




v = d cos wpt cos k (x +-—E§),

W
P

w o sinw t cos k (x + —E—),
P p L 2

P

t=
If

are solutions, and by "superposingﬁ these solutions for different k's
in the above sense, one obtains the general one-dimensional solution
of (1) in the form
E
= + —=) si
E wpf(x ‘ 2) sin (wpt +8),

W
p

f(x. + ie) cos (ut +0), (16)

W
p

<
]

where f is an arbitrary function. This can also be verified by
straightforward differentiation. We shall now proceed to interpret

these solutions physically.

Integrating ¥ + wp2 v = 0, we have
2
D wpg (x - x_) =0, (17)
Dt
where Dx
..—.9:0
Dt '

Here x = x(t,xo) is the position at time t of a fluid-element, whosé
equilibrium position is X,e The various elements execute harmonic
oscillations, each with another center and another maximum amplitude.
These centers and amplitudes are arbitrary (except for certain contin- .
uity conditions), and therefore the elements may crowd up, at various
phases of thelr motion, in a way which gives the space functions p(x,t)

and v(x,t) their non-linear character.

(17) also explains why (16) is a solution: since m¥ = eE and

2 . . ~ .
= . 2
b Wg (x-x_), the argument x + Eﬁng) fulfills (D/Dt)(x+(E/wp))=O,
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and therefore it plays the role of a constant when (16) is differen-
tiated by D/Dt. From the point of view of the theory of characteristics

of partial differential equations, D/Dt is a differentiation in a

(33)

characteristic direction in the space x,t,E,V and the solution (16)

is essentially written in terms of the parameters & = x + (E/ws), B=t

along the characteristic lines. The method of characteristics has been

(28)

used in the present case by Dolph.

Since x + (E/wp2) = x_ with on/Dt=O, (13b) can also be written
in the form '

x(t,xo) =%+ A(xo) sin wpt + B(xo) cos wpt. (18)

This is the solution in the Lagrangian representation; it first.

. 26
appeared in literature in a paper by Dawson( ) who obtained it from

vhysical considerations: if a fluid particle is displaced by x =~ X, to

the right, say, and if overtaking of one particle by another is excluded,

it will feel a restoring force (- wpg)(x—xo) coming from the left (since

the amount of negative charge on the left has not changed, but the

amount of background charge has increased by -no(x - xo) ).

Before we proceed to the three-dimensional case, we should like

to mention some more properties of the one-dimensional case.

1) Equation (7a) for p can be solved straightforwardly in the
X frame (i.e., in the Lagrange representation of the fluid): multi-

plying (7a) by ¢, we find the first integral
2
52+w§ 2+ 2 %3

3

= constant,

n
e}

which shows the characteristic behavior for non-linear oscillations: if

3

the p~ term were absent, the corresponding curves in p, § -space would be
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3

ellipses; the p~ -term distorts these ellipses towards negative values

of p so that the maximum excess of electrons is greater than the maximum

electron deficiency.

2)  Multiplying E + wg v = 0 by E and integrating, we obtain

o+ v° = 1°, where Dh2/Dt = 0. This expresses the energy con-

P
servation per particle. Conversely, we could have obtained our

2, 2 2
v/

solution (11) from this conservation equation, since E /h G

admits E2 = h2 sinzwpt, w§ v2 = h cos2 wpt.

3) The question naturally arises, whether our solution can be

generalized to include also thermal motion. As a first step in that

G4)

direction oﬂe might think of the beams-method of Bohm and Gross.
One is thus led to consider the case of two charged fluids, pl,vl,El and

p2,V'2,E2 superposed on the same background n,- Both produce the field

= +
E El E2 through

i + = i + -
div (El E2) i (pl Py no)
(pi is now the total charge density of the i'th fluid, and not its

excess over no); they fulfill separate conservation equations

op op,
5?f'+ div pivl= 0 ; 5T +_d1v PV, = o,
and they are driven by the total field
v ov ov ov
1 1 - 2
5t T Visx " FLTEysEw tVosx TE T B

However, no simple solution to these equations, corresponding to
the one-fluid case, was found. Also the method of characteristics

seems to give no straightforward solution. The physical reason for the

N~

o An
AN Ll

3

+ L lade LT
b v v v il

i< COI"&SPOTQIL]g X \L

(8]
O
»
o
l._l
j»]
[
O



. 2 2
equations are ﬂl = - wp(xl - fl) - wp(xl - f2) where (Bfl/at)+vi(afl/6x)

and (sz/at) + v2(8f2/8x) = 0., Thus, the particle x

I
O

of the first fluid

is subject not only to a restoring force towards a constant center fl,

but also to a restoring force towards a varying center f2.

The varying

values of f. are the centers of the particles of the second fluid which

2

the first particle passes on its way. The motions of the particles are

therefore coupled in a complicated way and no simple solution should be

expected.

I.3. Some exact solutions of the three-dimensional case

Our results for the three-dimensional case, i.e., for the
solution of (3), can be stated very shortly: All the solutions (11),

(15), (16), (17), (18), hold also for the three-dimensional case; the

more general solutions (10) and (13), however, do not hold any longer,

except for some extreme cases of parallelism or perpendicularity of

the corresponding modes.

We shall prove this for the solution
. . e 2

p
We have
L iw - kv)(xv + LB ) + ik-E (v +
T % P o 2
: W

P

The real part gives
; -

»Y: = (wp- E.—Y_) w - ( 3) ,E)
o w
P
and the imaginary part gives
. k*E
E=- (w-ky)oy+ Gy

This means that E is parallel to v, and hence (k'E) v = (kv) E

(19)



and
) o v e EX
B -xw e vt GO de.,
p
E (wp-ggy_) = - (wp-’l‘g_y’) o v, i.e.,
. 2
E=-w_1wv.
—~ p~

Inserted in the ¥ -equation, this gives ¥ = E. But (v'¥)(Dy/Dt)-v aiv(Dy/Dt)

can be seen to vanish for (19) since, as a simplé calculation shows, both

terms give wp(gﬁz/(l - gygjwp)lg. The system (1) reduces therefore to

E = - wp.E:li = § q.e.d. This result should have been expected: a mode

which is of the plane-wave form will remain so, by the conservation of

the circulation. On the other hand, plane-wave modes of different

directions will interact and will dissipate their energy by exciting

all the other plane-wave modes. This fact, which is indicated by the ' ;
. G

1
dissipation¥ -term Tr(s2) in (5), was proved by Sturrock. ) Therefore

the superposition property (10) will no longer hold. Indeed,

]

v=x¢ cosE. and E=w_ X o, sin §,.: will still be a solution of
~ 1~ i = p i1 L

E= -wsy_ and ¥ = E but now (v-¥) Dv/Dt - ¥ div (Dv/Dt) # O.

It is quite difficult to obtain exact solutions in three-dimensions
for which the right-hand side of (3) does not vanish. Various considera-

tion, which will not be entered here, led us to expect that the "Ansatz"

X X (gl cos § - @, sin ?),
(20)

E=3v=2X (gl cos § - &, sin g) -x ¢ (gl sin ¢ +a, cos ?),

would lead to a solution, where X(glt) and ¢(§lt) are scalar functions

to be determined by the equations (2). This can be demonstrated in

* Tr(s2) appears also in the entropy-relation for viscous fluids,

TTrrAnam e wn

S A~ o T vl LA
Ches “ee y LGN g LAY UL UUYLIGALLUD .



T

some simplified cases. PFor instance, if the assumptions

DX _
I = 0, (21)
DX

€ oX .
——= = 4 . . =
5= 5% (@, sin p + g, cos p) * VX = 0,

are made, one obtains for X and ¢ the following equations:

2= () = o,
. . | . (22)
wg'ﬁ‘xm =X (¢ sin § +g, cos §)° V(P),

where ¢ = @, sin p +a, cos p and D /Dt =3/3t + (7).

The second of these equations is separable, D ) /(ws - ¢2) = (1/X) Dt

and gives § = tgh (w,/ X)(& - %), vaere D t /Dt = O.

If it is assumed that to is a pure constant, one obtains

W
$=X4n cos h ifl (¢-t ) + @_, with p = O. (23)

This provides a special exact solution of (3), for which the right-hand
side of (3) is not zero. It should be noted that for x — @, @ tends
to (1/2) wpt). In attempting to find more general solutions, the
following lemma (which can easily be proved), may serve as a time-
saver:

If E(h) and y(h) are a solution of the set (2) where h=h(x,t,E) is
any function, then the right-hand side of (3) vanishes for this

solution, i.e., (2) reduces to

E'i‘(,l)gx:o,y:: ’E"

Blo
Blo
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Part II. Nonlinear density waves in a disk-model for a galaxy

II.1l.Discussion of the model and a general physical picture of the modes.

The model of an infinitesimally thin disk of matter, whose parts
are subject only to mutual gravitational attraction and to centrifugal
forces, has frequently been used to represent the star-distribution in
SO-galaxies and for the major portions of all ordinary spiral galaxies.
Especially during the last 2-3 years, the question of the gravitational
instabilities ¢ 27(12) o suon aisks and the possibility of spiral
arms(l3)-(l8) has received much attention,iwhereas previously efforts
were directed mainly at finding consistent distributions of mass,
potential and angular velocity over such disks.(35)—(ul)

Such models seem t0 be quite realistic because of the high (~ 10:1)
degree of flattening observed.in such galaxies; £ecause it now appears
that interstellar matter makes only a few percent of their total mass;
because stellar encounters are too rare to make consideration of collision
necessary, except at the center, and because magnetic forces seem to be
small. The only other factor which need be considered is the random
motion of the stars; this is a stabilizing factor which introduces a
lower limit to the characteristic lengths of ingtabilities, but may
otherwise be left outg5 )

Mestel(u2) divides disk-like galaxies roughly into two classes:

those like M 31 or our own whose rotational (linear) wvelocity, V(r),

is roughly uniform over a wide range of distances from the center*, and 1

* (quoted from  (42) ): "According to Kwee et al.,

a value of 200 km/sec is correct [in owr galaxy] to within 12 or 13
percent over the range of 1.9-8.2 kpc.; between 2.93 and 8.2 kpe, a
value of 210 km/sec is correct to about 7 percent_"
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those whose angular velocity;Kl(r), is roughly uniform (solid-body
rotation). In a careful mathematical analysis, HuntérH%inds that
these two cases are only the two extreme ends (with n = ® for the
V = const-case and n = 1 for Q-const)of a whole chain, Vs Qn of

models, in which the density functions Qn(r) are proportional E?
the m-n-th associated Legendre polynomials PE(E) of § = §1 - i—é
)
(the variation with the azimuthal angle 6 being given by a factor
eime)

We shall here be concerned with the case n = 1, i.e., (taking

the disk to be in the x,y-plane with polar coordinates r,0)

v(z) = (Y2 ()
2RO '
Q(r) = clg%)l/e = const (2)
2R
o

where G is the gravitational constant, M the total Mass of the disk
and RO its radius. Y, the gravitational potential in the plane of the
disk, can be found by equating the gravitational force per unit mass
in the plane,

1 (3)

r

o/)| o/
e

g:
to minus the centrifugal force per unit mass, er:
2 oY
Qr =- 357 )

giving

e
]
—
N
ov]
1
>

(r <R (5)
g= -2 . (r < R) (6)

where we used Hunters choice of integration constant. The density o(r)




-17-

can not be found from this by taking the planar V-G, since the mass
element in question sends force-lines also in the z-direction (perpen-
dicular to the disk). The density distribution for this model seems

(3)

to have been found first by Wyse and Mayall as a limit of a homogen-

eous oblate spheroid:
2

R (7)
R02 Ro?

A galaxy model of this kind may therefore be considered as the
final stage of collapse of a "primeval' uniform spherical mass distri-
bution which rotated about its z-axis and therefore offered no counter-
force to the flattening in that direction (as in the disk case , we
are Justified in neglecting pressure forces). Case n =« would have
resulted only if an additional collapse, in the plane, of mass towards
the center of the disk, had taken place.

We take the model given by equations (1) to (7), in which gravi-
tational pull and centrifugal force balance each other, as our
unperturbed disk ("equilibrium disk"). This would correspond, in the
electron plasma case of Part I, to a homogeneous electron-fluid
distribution, in which the forces from the negative and positive
charges balance each other at each point. We saw in the plasma case
that a deviation from homogeneity tends to correct itself, producing
a wave-like motion, the non-linear character of whose basic modes is
depicted by Fig. 1 of Part I. We also saw there that one may
understand this behavior in terms of the individual motions of the
"particles" (fluid elements), i.e., in the lLagrangian picture: A
particle displaced from its equilibrium position will feel an excess

of positive charge over the negative charge, pulling it back. Similarly

in our case, a particle perturbed to a larger r will feel an excess



of gra&itational pull towardé the center over the centrifugal force
(the latter @ecreases* whereas the former increased because

of the greater mass now enclosed by the new circle r). The particle
will be pulled back, acquiring momentum on the way, whereby it over-
shoots its mark and the process reverses. Thus, oscillations are set
up, with a typical frequency which corresponds to the plasma frequency
of Part I. However, an oscillation in the r direction must be accomp-
anied by an oscillation, which is 960 out of phase, in the € direction:
As the particle swings out to larger r, its © motion has to slow down,
in order to keep the angular momentum of the particle constant, and,
conversely, it must accerate while the particle swings inward. Thus,
instead of being an oscillation, the perturbed motion of the particle
is in reality a circular motion, about the tip of its equilibrium
position-vector, which latter rotates With the disk.

As in the plasma case, we may, for different particles, choose
arbitrarily related amplitudes and initial phases for this circular
perturbation-motion. By choosing certain simple periodic relation-
ships between the amplitudes and phases of different particles, one
obtains the basic "modes" of the density waves produced thereby.

Since it will, in general, happen that the particles will bunch up,

in a nonlinear way, at various regular intervals of space and time,

one will find that the modes so defined have the typical non-linear
character of Fig. 1, Part I, even before we take into account the
gravitational effect of these density waves in further perturbing the
motions of the particles.

This type of nonlinearity, which is obtained on the assumption

of an unperturbed Force law acting on particles (which is a good

* Since we are discussing radial oscillations, we assume -that the

“-particle 1s perturbed in the radial direction only, i.e., the angular

momentum ~ Q r2 remains unperturbed; hence the centrifugal force, ~ Q%p
changes like 1/r3. ’
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assumption as long as the perturbation is small) will be called

"kinematic nonlinearity". The nonlinearity resulting from the
effect of the perturbed density on the motions of the particles
which produce this density perturbation, will be called "dynamic
nonlinearity". In retrospect, all nonlinearities found on the one-
dimensional cold plasma case were strictly of the kinematical type;
that they could not be anything else follows immediately from the
fact that Coulombs law in one dimension gives a force that is
independent of distance; hence bunching up of particles will have
no further effect on other particles.

Our task in the present model is therefore considerably more
difficult, as we have to take into consideration also the dynamical
nonlinearities. However, the discussion of the kinematical non-
linearities is of considerable value in itself because it clarifies
the framework upon which a more complete nonlinear theory has to be
built, by providing the form of the basic modes relevant to such a
theory, and by providing a much more suitable starting point to an

approximation hierarchy (such as a perturbation series). (In this

sense this is analogous to "renormalized" particles providing a much
better starting point than "bare" particles in qﬁantum field theory.)
The main object of the present paper is to set up such a kinematical
framework; it will be left to later work to carry out some of the
dynamical part of the program, although indications will be given in
Section 4 of this paper as to possible waysvof attack on the dynamical
problem.

The way in which this object will be carried out will, in a sense,
be reverse to the logical development in Part I. We shall start, in
Section II.2, with the discussion of the individual motions, i.e., with

the Lagrangian picture. In Section II.3 we shall then eliminate the




FIG. 2

The motion of a perturbed point in a uniformly rotating flat disk
2
of density ¢ = const /1 - E;E' 1,2,3,... are consecutive positions of

k
the unperturbed point; ©

1",2",3",... are the corresponding positions of the perturbed point.
The broken circle would be described if the oscillatory perturbation

were of frequency Q instead of 2 Q.

Ca
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Lagrangian variables and obtain the nonlinear waves for the field G,
density P and velocity v, i.e., this will be in the Eulerian picture.
Finally, in II.4, we shall indicate the treatment of dynamical non-

linearities.

IT.2. The perturbed individual-motions of particles in the disk

(a) The equations of motion

In this section we shall develop the details, in the Lagrangian
representation, of the general physical picture of nonlinear modes
‘introduced in Section 1. Using the notation introduced in connection
with equations (1)-(7), the motions of particles in the disk will be

governed by the Hamiltonian

2 P2
goif L8 a2
T om omre | 2 (8)
where a = ﬂMg (9)
2RO

and P> Py are the radial and azimuthal canonical momentae. The

equations of motion,

o b
r = §£ s Pr = 'ﬁg - ar
mr
P
e’ .
O =%, B =0
mr
glve o
- p§
mf = - ar + — (10)
mr
p_ = const (11)
9 2
A pe.
-mff = == 7 (12)
73

2 . . . . .
pe /mr3 is the centrifugal force; - EPQ r/r3 is the gyroscopic
force which produces an oscillation in the 6-direction if there is an
oscillation in the r direction. To treat oscillations in the r direc-

tion, we define an equilibrium radius, r by

e)




2
1Y P
0 oA ;] 6\1/k
mfe =0=-ar + 3 > fee, v = ( ma) (13)
nr
e
(b) Small radial oscillations
We may define
dbr=1r -1 (1)

and in this section we shall assume this to be smsll enough for 6r2 to
be negligible in the force equations. (We shall later see that we
might as well solve equations (10)-(13) exactly, but the linear
treatment is of interest for several reasons.) Expanding (10)

about L we oObtain

3 2 I 2
msf = - (o + B br=- £ by (15)
mr mr
e e
i.e., 8r oscillates harmonically,
8r = A cos (wt +B) (16)
with frequency
w:gl?%:ev’?i =20 (17)
m .
oy

the
i.e., this is twice the frequency Q at which/disk rotates. Expanding

0 = 'p.,/mr2 to first order in 8r, we obtain
&

s - Pa Sr
e = 2(1'21« (18)
mre e

so that, by inserting (16) and integrating,
6 =3¢ -2 sin (ut +B) (19)
e

mnr
e

The first part of (19) describes the uniform rotation of the
disk, with angular frequency {2. The second part is an oscillation
in the azimuthal direction which is 90O in advance of the oscillation dr.

The maximum amplitude of re66 is the same as for 86r. Hence, in the




=022~

jY
frame moving anti-clockwise with the uniform rotation 9e= —;—5 t,
mr
e

the two components of the oscillation make a clockwise rotation, of
radius A and of twice the frequency as that of the disk. As seen in
the laboratory-frame, the point describes the elongated ellipse in
Fig. 2. 1Its distance from the center is given by

2

r=(r "+ A% - 2r A sin wt)/2

Introducing the position-vector ;e of the unperturbed particle,

Xx =r 1 (20)

where iro’ ieo are the radial and azimuthal unit vectors rotating
with the disk, i.e.,
ai diQ

3\. (@]
6o’ dt

1o (21)

nIE

one finds for x_ and for the perturbed motion x = x, * 0x,

d xe . -
m = - QUr 1 = - X
dt2 e e
a5 =
m ——2 = - 0 X
dt
and hence
2. =
d 6x w.2 .~
= - (3 8x | (22)
at
which is in agreement with &% = - 0281 because of (21). The solution

we found for small perturbations can be written as

}:';e + A (cos (wt +8) I - sin (Wt +B) I )... (23)

By choosing a suitable distribution of ;e’ A, B-values over the
various particles, the Lagrangian variables may be eliminated between
(22) and (23) and one obtains nonlinear waves in the Fulerian representa-

tion. This will be done in Section 3. However, we have to convince



o3

ourselves that the terms neglected ?n the present subsection (i.e.,
(6r)2 etc.) are not of the same order as the nonlinear part of these
waves. We shall therefore proceed to solve the system (10)-(12)
exactly, and we shall see that the nonlinear features of the Eulerian
representation have very little to do with the nonlinear terms of the
Lagrangian representation. Thus, for most purposes the above solution

will be sufficient.

(c) ZLarge radial oscillations

The first integral of 10 is

2
D
2 a2 @  2E _ :
P ot s = = (24)
mr
this leads to
3 o 2 2 ,22-1/2
t-%—f@-mr - p5 /m") dr (25)

u + em/2x, the integration gives

"By the transformation r?

= %5 (e + (eZ-Aa 9? /m3)l/2 sin w(t - to)]

Denoting the unperturbed value of € and E by ee and Ee respectilvely,

and introducing f:

c=v® 2 o _me® 2
e 2 Te? fe T Ye
R (26)
T= "%
e e
2 = rez [£+ (£° - 1)1/2 sin (wt + )] (27)
ri - f
sin § = —5— (27")
o (f2_1)1/2

6 = ré/mr2 now integrates to
o =4%] et + go) +8"
£ +/f-1 sin (wt+¢e

where €' is a constant, and this gives



tg (0 -8') =rtg (F+3g,) +/e -1 (28)

and by 8(o) = 90,

tg (60-9')=ftg§Q+\/f2-l (28%)

(28) can also be written
sin (2—t+%+‘f)

tg (6 - 6") = /orP-1 (29)
wt . Po
- +
cos (2 5 )
where cos Y = f/\/2f2—l.
In vector form, the equations of motion of a particle are
2 2
== =-= x=- p's : (30)
Dt2 m T

In the following, we shall have to distinguish between the
starionary (-”iaboratory"—) frame and the frame which is fixed in
the unperturbed disk, i.e., which rotates with uniform angular
veloéity'Q = w/2, Vectors which are constanf in the stationary
frame will be denoted by‘K,%,E,..,iO;VO,... and the convective
derivative in this frame will be denoted by D/Dt. Vectors which
are constant in the rotating frame will be denoted by
'2,%,2,...,20,30,... and the convective derivative in that frame by d/dt.
The position vector of a particle will in general be denoted by‘§ in
both frames, unless we have reason to emphasize that we wish to
consider the components of ; in the stationary frame in which case
we shall use X. Similarly, any vector ? which is wvariable in both
frames will in general have only one notation. The Cartesian axes in
the stationary frame are X,Y in the rotating frame x,y; thus

= s i = : + i = g
X =x1 +y 1y X Iy Y lY X

he solution of (30) in the stationary frame is of course the ellipse




> = o=t 2 w -
x = A cos {5 b+ al) 1, * A, cos (2 t + ae) ig (31)
and by putting in the initial values X_,Y_ one obtains
_ R 2\1/2 _ 2 VX
A = (XO + UL Vbx/w Y, tg @ = - X,
(32)
_ 2\1/2 _ 2 Voy
Az"(Yi“*VoY/w) SR T T &

However, our purpose is to go over to the Eulerian representation

and for that the rotating frame is a more suitable starting point.
If Q is of magnitude Q and in the direction of the angular momentum
of the disk (+z direction, since we assumed the disk to rotate counter-
clockwise), we have, for any a,

Da = = da _ _

= =0Q xa , =—=0 (here and in what follows, x denotes
Dt dat
the vector product)

and for any variable vector f

-

DF 4f .= -
EE'*'QXf: » (33)

in particular,

o 2o Lo
_D>§=__d}2<_92;{+mx§>—; (3k4)
Dt dat

Using (34), we obtain from (30) the equation of motion in the

rotating frame

vhere ® = 2Q, and from this

-
c

-

= -Wxx
where, according to our notation, c is fixed in the rotating frame.
Taking the last equation at t = O, and using (32) to express (g% ,

£=0
we find
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—_ - -
c=v_+t X Xo

e}

e

—

where X.s ;o are vectors fixed in the rotating frame which coincide
at t = O with the initial conditions X_, V_ of the particle. ¢ can

further be re-written

o X voﬁz
c=wx(—§+ S )
w
so that if we define
a =20+ T2 (35)

We obtain for the equation of motion in the rotating frame

d_X—)_ — — - -d__g_—
-d?t-——wX(X-a), dt_ODOr

a-8) L 3. G- D), o (36)

22 -
QX o 2 (x - a)

a replaces the vector x_ = reir of subsection (b); it is, in fact,

different from relr: denoting by lro’ l@o the polar unit vectors

i 2 . _ _ 2
associated with x , and using v g = po/mr =~ =W r, /r s
vxw e @ v
© " o®Bo or ro r_ ‘ro o
2
_ Te ; _ _Oor o
op 2 “o w 0o
o
where r_ = lx |, thus
- 1, e - or
= (= + - Ky
a (2 op 2 ) %o w_ ‘oo (37)

The general solution of (36) can be written' in the form
X - a=D0bV, whereb is a const. and

v = cos (- wt +B) ix + sin (- wt +B) iy (38)




FIG. 3 i

0 is the center of the (counter-clockwise) rotating disk;

-

a,SEO and the x axis are fixed in the disk, P_ is the initial

position of the particle, which rotates clockwise around the

perburbation-center O', with angular frequency w = 2Q (Q =

rotation frequency of disk).
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i.e., V is a unit vector which rotates counter-clockwise, with angular
frequency w, as seen from a Cartesian system ix’ iy which is fixed in
the rotating disk; in terms of the stationary frame we would have
v = cos (- %-t +B) iX + sin (- %t +B8) {Y

We thus obtain the same type of motion as in subsection (b) and
Fig. 2 applies here as well. The only difference is that now.; dOeé
not rotate sbout the tip of Ze =r_ 1 but sbout that of 2, (37).7
The relations between the various unit-vectors and angles are

illustrated in Fig. 3.

IT.3.The perturbed motions in the Eulerian representation; kinematic

nonlinearities.

Equations (38) (or (23) ) represented the motion of a particle
which was by some cause perturbed from its equilibrium position (which
latter is fixed in the rotating disk). The motion contains the four
constants ;, b and B which, so far, were arbitrary (corresponding to
an arbitrary choice of‘;O,?g). In reality, we will be interested in
perturbations produced on the particles by, e.g., an initial deviation
from homogeneity of the density. The values of the constants ;,b,B of
the various particles will then be correlated by the effect upon them
of this deviation from homogeneity and by the fact that this deviation
will have some smooth functional form vs. position and time.

In "linear" treatments it has been customary to concentrate in
particular on, e.g., sinusoidal deviations from homogeneity; the
response of the particles to this perturbation is, in itself, of

relatively quite complex nature and would produce a further change in

-
o N = o P AN £ - . . v , ] . I
* wWe do not denote bV DYy D Decause 1L ls [OL CUlSLAILL L Llie

rotating frame.
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the functional form of the density which is quite different from the
original perturbation. However, one usually analyzes this response
again in terms of sinusoidal functions. Although, through Fourier

Composition, one in principle has the tool for controlling all

changes, in practice one looses this control again by the neglect
of higher order terms. Thus, a solution of the form of Fig. 1, which,
as we shall see, is quite simple and natural from the point of view of
our analysis, would be quile inaccessible from a linear treatment.

Thus, we shall look into the system itself for the definition of
"natural" functional forms, in terms of which the analysis will be
carried out, rather than imposing such forms arbitrarily from the
outside. The first step in this direction is by formulating simple
modes which describe the waves of force, velocity anddensity, in an
approximation which is of zeroth order in the dymamical effects of
these waves on the motions of the particles.

To define such modes, we assume simple relationships between the
constants ;,b,B of different particles.

Since ; is the position vector of the point of equilibrium about
which the perturbed motion of the particle rotates, and since this
point is simply related to the position of the particle before the
perturbation was "switched on", we shall assume that we have to deal

only with cases in which the tips of the wvarious a vectors are distributed
as the unperturbed density distribution, o(r) of:eq. (7), of the disk;
further, that to each particle there is bne ; and vice versa, so that ;
may be taken as a single valued Lagrangian variable for the particles.

Second, we define fundamental modes by choosing relationships b(a),
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€.,

v(a) = o, cos (x lE p'y Zl)

where k=k iz (39)

Thus, different modes will have different "wave numbers" k and
"amplitudes" ¢ . The utility of such a choice will depend on whether
we shall be able to fulfill a suitable superposition process with such
"modes", so that a general profile can be resolved this way. We shall
see that this is indeed the case.

Taking (39) as one possible relationship (other useful ones can
easily be thought of) and assuming first for simplicity that B of
eqtn. (38) in zero for all particles, we may now use the equations
of motion (36) in order to eliminate a from equation (38). This
will give us the Eulerian description of the k-th mode. Denoting by

e the force per unit mass (g here takes a similar role to that of £ in

Part I):
- a® % ‘
g (x:) = 5 (L0).
we obtain from (36)
a=x+ %2 , (k1)

and hence from (38) and (39)

2Z,t) = - w2 (@) 9
= -0 @, cos £k x x + 5;2—5 1)V (L2)
w
where now*
vV = cos (- wt) i, + sin (- wt) iy (43)

(42) implicitly defines the field strength g as a function of x
and t, in much the same way as (IIb) did so for E. To see the similarity

with Fig. I, we write

*More generally, we may choose some functional form B(g).
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e d - 2
- —_ k
kxx+ _jé{_g l2 - x° | x +fel2= k2(r2+fﬂ + (12)_;5 cos (wt '*"9)) (L)

where we have used (see Fig. 3)

i cos 9 (x,‘5§)= cos 9 OPO'; 9 OPO' =B -wt - 0 = - wt - 6
: W
Thus
. —_—
g =w201k cos (% kﬁ@ +5§+2_12"§ cos (wt +8) ) (45)
w )

to see the form of g, denote G = kg/wg, R = kr, and ¢ =wt + 6,

and choose the + sign:

\
G = o cos VR® + G° + 2 RG cos )

One easily finds the following properties of G:
(a) For R=0, G =& cos G, which gives one solution as long as
lal << 1T but may be 2- or 3-valued when lal approaches T,
-(b) G =0 implies R= (&n + 1) %- for some integer nj; however,
R being of this form does not necessarily imply G = O, i.e., the
curve G(R) (for given P) need not pass through all points

i i m .
R = 5° 3 53 5 FRREE on the abcissa.

2

]

-
(c) &y rnplies_either,/%2 +G +2RGcos § =2nm, in

dR
which case G 2

5T M
+ o and one has//R2 + o~ £ 20R cos ¢ =2n M, or it

implies R + G cos § = O.
Taking cos § = O, one obtains
G=uo cos«/R2 + G2
which is given in Fig. 4 for the case of sufficiently small @ (so that
multivaluedness near R = O is excluded). We see that for low n values,
G resembles Fig. I, but as n increases the distortion becomes less and
less and the curve resembles an ordinary cos R more and more.

These results can be generalized to the case cos § # O, and they
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will be of the same nature.
Again,. the solution (L42) can be generalized to

eG,t) = -0’ T o cos (Hkxx +EEE| ) (46)
k _ w

Since this is just a way of stating that the function b(g) may be
chosen arbitrarily, the most general solution can therefore be

written

gle,t) = -0’ s (x+ &) 9 (47)
w

where f(g) is an arbitrary scalar function of §. In treating dynamic
nonlinearities within a certain approximation (to be defined), the

problem will reduce to that of finding, for given conditions, a suitable

function f.
However, we shall first obtain the density distribution associated

with the mode.
It is to be expected that the density o(r) will be large

wherever the slope of g(r) is large (see fig.4). Indeed, the
density is given by

0 =0_+60= GO/D (48)

where c, is the unperturbed density, given by (7), and

2% 3x
da_ 9da
X y
D= (49)
Oy 2y
dg_ Oa
X y

In writing (48) we have assumed that the distribution of the tips
of the Z-vectors is as that of the unperturbed particles (and hencé
the Jacobian between them is unity).

r the more general case (i) we

obtain
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1 .
O = oo 2 s l.e., (50)
1 + wf'cos(wt + 0a)
w2 'cos (Wt + a)
bo = % 1+ wef'cos(wt + Ba) (50a)
(f' being the derivative df/da); for the particular mode (45), we
obtain
O =00 1 (51)
1 - @k sin ka cos(wt + 08a)
i )
50 = oo Yk 8in ka cos (wt + 8a) (51a)

1 - ok sin ka cos (W + Oa)

In both (50) and (51) we have to think of a as expressed in
terms of x and g(x), through (41). When ak << 1, (51) can be
expanded to first order of ak; 60 then describes a sinusoidal
perturbation of the density which is obtainable also from the
linear analysis (e.g. ref.( )). The case of interest here is
ok £ 1., When @k~ 1, (51) describes "spikes" of large density
concentration (see fig.5) which occur at certain radial distances
(approximately at é% s g%, g% ...) and at azimuthal angles which
fulfill cos (wt + 0a) = 1. Assuming @ to be sufficiently small,
Ba is close enough to 6 (see fig.3) to describe the azimuthal
position of the spike by 6 = wt, i.e., there is one spike on each
gk’ g%, ... and this spike rotates (clockwise)

with angular velocity - W, as seen from the frame fixed in the disk

of the circles r =

(i.e., the stationary observer sees the spike rotating (clockwise)

. R w . . .
with angular velocity =~ 5). As seen in fig.5, the spikes become less
and less sharp the further they are from the center of the disk;

eventually they will degenerate into an ordinary sinusoidal perturbation.

v Tt vaio
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II.L. Typical features of dynamical nonlineararities

In this section we shall illustrate some typical circumstances
which arise when the effect of the perturbed densities on the motions
of the particles is taken into account. This effect results in what
was called, in section 1, a "dynamical" nonlinearity, whereas a
"kinematical" nonlinearity (which is the only linearity present in a
one-dimensional plasma) is the result of the bunching up of perturbed
particles which move under the gravitational influence of the unper-
turbed density.

To obtain an understanding of principle, we shall assume that
the initial perturbation of the particles was limited to a sufficiently
thin ring rq <r< r,, SO that only one of the spikes (the sharpest
one, say) discussed towards the end of the preceding section, will
be present. We also assume ka ~ 1 so that the spike is sufficiently
narrow to be considered as a mass-point Q, of total mass K, say.

In the frame moving with the disk, both the spike Q and a
typiqal particle p° are seen to rotate clockwise with angular
velocity w, as lbng as P° is not yet accelerated by Q. Q rotates
about the center O of the disk, P° rotates about the tip O' of its
(as yet unperﬁurbed) al-vector (see fig.6). If one chooses both

rotations to be in phase, it is easy to see from fig.6 that the

lines QlP; s Q2P2, .o through corresponding positions all pass

through a fixed point S and that

(£)P°(t) : Pt) s=c (52)

where dc/dt = O.
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Therefore, the gravitational attraction

0
Ty = % =3
P
exerted by the spike on p° (per unit mass) can be written
2 §p° -
Fo = ®c =53 , (53)
SP

In other words, F. can be replaced by a repulsive force coming

Q
from S, again with an inverse-square law and with an effective "charge"
g = G&c2 (while the "charge" at P is assumed to be one).

If the two rotations are not in phase, essentially the same
result can be obtained, with a somewhat more complicated geometry.

To find the perturbing effect of F. on the Po-motion, we

Q

decompose the vector equation (53) into a component in the direction

-——

SPO and one perpendicular to it. We denote the true (i.e., perturbed)

position of the particle by P, and

=0 _ -0 -»—Ov—b _ —
= = §
SP S P*P S } (5)4_)
— —_ -0 —
SP =g=3s + 6s

and from the geometry of fig.6 (see the broken lines) we conclude that

—— p -« —

o's = 2 = ca (55)

(p is the distance of the spike from O, while @ - according to
(42) - is the distance of P° from 0').
It xo denotes the vector OPO,

-

§°=(1+e)§.{+sO (56)

Hence the equation of motion of PO, (36c), can be written in terms of go

s -
20 + w2§ - - w° (1+c) 2 (57)
at °©

To this equation we now have to add the force F,, Taking F. to

Q Q
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zeroth order in 8s, one obtains the equation of variation (with q=Gp02 > 0)

2 47 -0
6 2 7 t
205 10?55 = g 2L) (57)
dt |s l
To this equation we now have to add the force Fé. Taking Fé to
zeroth order in 8s, one obtains the equation of variation
(with ¢ = Gpc2 > 0)
a5 2= 5°(t)
S +u’ 65 =q 2 (58)
dt |s°|

and to first order (expanding (s° + 6s)/|s° + 63\3)

2, =0 0
d78s 2 q - (s *8s) =0 s (t)
+ (W< - )8s +3¢g \——=/ s =4 (59)
at” |s°|3 Bk s°1°

Equation (58) is simple to solve: The component of (58) in the
direction go is of the form
= £(t) (60)

éé + 0.)2631

11 1

whose solution is (with arbitrary constants A,B)

£
85y, = ‘% {d’l‘sin w (t - T)F(T) + A cos (wt +B) (61)

and the component in the direction perpendicular to go is simply
6%1 B cos (wt + )

with arbitrary constants B,Y. More interesting for the typical

nonlinear phenomena of the disk is the next order - equation (59):

The important component of (59) is the one in the direction of ;o’

for convenience)

1
5|3

it si (dropping the ;

85 + (W2 + 2q ) 6s = £(t) (62)

The crucial point about this equation is that the eigenfrequency-

. 2
squared, W , has been supplencnted by ¢

o . . .
s (t), is periodic (with frequency w). Thus, (62) is of Hill's type,
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and the delineation of regions of stability and instability of its
family of solutions depends sensitively on the value of g (see, €.8.,
( )). This means that while there may be many particles of the
disk whose circular perturbation motion (as seen from the rotating
disk) will be merely perturbed somewhat further by the spike into a
nearby "apple-shape" (fig.6), there may be others (those nearest to
the spike) which will be thrown out of orbit altogether. In terms
of a Bulerian representation, this instability - which contains
features which are above and beyond those predicted by a linearized
analysis in the FEulerian representation - can again be obtained
using the general approach of section 3. One eliminates the
Lagrangian constants of motion between the solution and the equation
of motion, and one obtains the nonlinear waves in the density by
calculating a suitable Jacobian. The problem of treating dynamical
nonlinearities is hereby formulated, at least for the case of sharp
spikes (which is the case of most interest). The solution of this
problem is a chapter in its own right and will be pursued in another

paper, with C. Cuva].
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Appendix : The possibility of spiral solutions

To see that nonlinear solutions of the type (42) may describe
also spiral waves, we need only re-include the Lagrangian constant B
which was dropped from equation (38). For B we may choose any
function B(ea), since Ba (see fig.3) is a Lagrangian constant. In

particular, we may choose

where m is an integer and, as in section 3, 6" can be assumed to
be small compared to ©. This gives a wave in the field strength

which is of the form
- 2 2 2 2
g(x,t) = - w& cos [k(r~ + EE + =Z8 cos (wt + 0))
. w w2

1
2_me-men]

For sufficiently small &, this is of the form
g = - w® @ cos (kr -m?9) |
which is clearly of the spiral type. In the more exact form of g,
the appearance of the term m 6 can be seen to lead to a similarly
spiral behaviour, although more complex, as long as 6" is not
comparable with © (in which case the picture given by fig.4t breaks
down anyway, since then the manyvaluedness mentioned in connection

with (45) sets in).
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